SELAMAT DATANG TERIMAKASIH ATAS KUNJUNGANNYA
kasih koment nya ya agar blog ini semakin baik

Sabtu, 09 April 2011

simplisia

Simplisia adalah bahan alamiah yang dipergunakan sebagai bahan obat, kecuali dipergunakan sebagai bahan obat, kecuali dinyatakan lain berupa bahan yang telah dinyatakan lain berupa bahan yang telah dikeringkan. Simplisia terdiri dari simplsiia dikeringkan. Simplisia terdiri dari simplsiia nabati, hewani dan mineral. nabati, hewani dan mineral. Simplisia nabati adalah simplisia yang berupa tanaman utuh, bagian tanaman atau eksudat tanaman. Yang di maksud eksudat tanaman adalah isi sel yang secara spontan keluar dari selnya atau zat-zat nabati lainnya yang dengan cara tertentu dipisahkan dari tanamannya. Simplisia hewani adalah simplisia yang berupa hewan utuh atau zat-zat yang berguna yang dihasilkan oleh hewan dan belum berupa zat kimia murni. Simplisia pelikan atau mineral adalah simplisia yang berupa bahan pelikan atau mineral yang belum diolah dengan cara sederhana dan belum berupa zat kimia murni.Untuk menjamin keseragaman senyawa aktif, keamanan maupun kegunaan simplisia harus memenuhi persyaratan minimal. Ada beberapa faktor yang berpengaruh antara lain bahan baku simplisia, proses pembuatan simplisia termasuk cara penyimpanan bahan baku simplisia, cara pengepakan simplisia (Anonim,1985).

Pada perlakuan pasca panen, tahapan – tahapan pembuatan simplisia, yaitu :
1. Pengumpulan bahan
Yang perlu diperhatikan adalah umur tanaman atau bagian tanamn pada waktu panen, waktu panen dan lingkungan tempat tumbuh.
2. Sortasi basah
Sortasi basah dilakukan untuk memisahkan kotoran –kotoran atau bahan- bahan asing lainnya dari bahan simplisia sehingga tidak ikut terbawa pada proses selanjutnya yang akan mempengaruhi hasil akhir.
3. Pencucian
Pencucian dilakukan agar menghilangkan tanah dan kotoran lainnya yang melekat pada bahan simplisia. Sebaiknya air yang digunakan adalah air yang mengalir dan sumbernya dari air bersih seperti air PAM, air sumur atau mata air.
4. Perajangan
Perajangan tidak harus selalu dilakukan. Pada dasarnya proses ini untuk mempermudah proses pengeringan. Jika ukuran simplisia cukup kecil/tipis, maka proses ini dapat diabaikan.
5. Pengeringan
Pengeringan dilakukan agar memperoleh simplisia yang tidak mudah rusak, sehngga dapat disimpan dalam waktu yang lama. Pengeringan dapat dilakukan dengan dua cara, yaitu pengeringan secara alami dan secara buatan. Pengeringan alami dilakukan dengan memanfaatkan sinar matahari baik secara langsung maupun ditutupi dengan kain hitam. Sedangkan pengeringan secara buatan dilakukan dengan oven.
6. Sortasi kering
Tujuan sortasi kering yaitu untuk memisahkan bahan – bahan asing seperti bagian tanaman yang tidak diinginkandan kotoran lain yang masih ada dan tertinggal di simplisia kering.
7. Pengepakan dan penyimpanan
Pengepakan simplisia dapat menggunakan wadah yang inert, tidak beracun, melindungi simplisia dari cemaran serta mencegah adanya kerusakan.Sedangka penyimpanan simplisia sebaiknya di tempat yang kelembabannya rendah, terlindung dari sinar matahari, dan terlindung dari gangguan serangga maupun tikus.
8. Pemeriksaan mutu
Merupakan usaha untuk menjaga keajegan mutu simplisia. Pemeriksaan mutu simplisia dilakukan pada waktu penerimaan atau pemberiaanya dari pengumpul atau pedagang simplisia. Simplisia yang diterima harus berupa simplisia murni dan memenuhi persyaratan umum untuk simplisia. Simplisia yang bermutu adalah simplisia yang memenuhi persyaratan Farmakope Indonesia, Materia medika indonesia.

Kontrol kualitas merupakan parameter yang digunakan dalam proses standarisai suatu simplisia . Parameter standardisasi simplisia meliputi parameter non spesifik dan spesifik. Parameter nonspesifik lebih terkait dengan factor lingkungan dalam pembuatan simplisia sedangkan parameter spesifik terkait langsung dengan senyawa yang ada di dalam tanaman. Penjelasan lebih lanjut mengenai parameter standardisasi simplisia sebagai berikut:
1.kebenaran simplisia
Pemeriksaan mutu simplisia dilakukan dengan cara organoleptik, makroskopik dan mikroskopik. Pemeriksaan organoleptik dan makroskopik dilakukan dengan menggunakan indera manusia dengan memeriksa kemurnian dan mutu simplisia dengan mengamati bentuk dan ciri-ciri luar serta warna dan bau simplisia. Sebaiknya pemeriksaan mutu organoleptik dilanjutkan dengan mengamati ciri-ciri anatomi histologi terutama untuk menegaskan keaslian simplisia.
2.parameter non spesifik
meliputi uji terkait dengan pencemaran yang disebabkan oleh pestisida, jamur, aflatoxin, logam berat, dll.
a. penetapan kadar abu
Penentuan kadar abu dilakukan untuk memberikan gambaran kandungan mineral internal dan eksternal yang berasal dari proses awal sampai diperoleh simplisia dan ekstrak baik yang berasal dari tanaman secara alami maupun kontaminan selama proses, seperti pisau yang digunakan telah berkarat). Jumlah kadar abu maksimal yang diperbolehkan terkait dengan kemurnian dan kontaminasi. Prinsip penentuan kadar abu ini yaitu sejumlah bahan dipanaskan pada temperatur dimana senyawa organik dan turunannya terdestruksi dan menguap sehingga tinggal unsur mineral dan anorganik yang tersisa.
kadar abu = bobot akhir/bobot awal x 100%
Penyebab kadar abu tinggi:
-cemaran logam
-cemaran tanah
b.penetapan susut pengeringan
susut pengeringan adalah persentase senyawa yang menghilang selama proses pemanasan (tidak hanya menggambarkan air yang hilang, tetapi juga senyawa menguap lain yang hilang).Pengukuran sisa zat dilakukan dengan pengeringan pada temperatur 105°C selama 30 menit atau sampai berat konstan dan dinyatakan dalam persen (metode gravimetri).
susut pengeringan = (bobot awal - bobot akhir)/bobot awal x 100%
Untuk simplisia yang tidak mengandung minyak atsiri dan sisa pelarut organik menguap, susut pengeringan diidentikkan dengan kadar air, yaitu kandungan air karena simplisia berada di atmosfer dan lingkungan terbuka sehingga dipengaruhi oleh kelembaban lingkungan penyimpanan.
c. kadar air
Tujuan dari penetapan kadar air adalah untuk mengetahui batasan maksimal atau rentang tentang besarnya kandungan air di dalam bahan. Hal ini terkait dengan kemurnian dan adanya kontaminan dalam simplisia tersebut. Dengan demikian, penghilangan kadar air hingga jumlah tertentu berguna untuk memperpanjang daya tahan bahan selama penyimpanan. Simplisia dinilai cukup aman bila mempunyai kadar air kurang dari 10%.
Penetapan kadar air dapat dilakukan dengan tiga cara yaitu:
- metode titrimetri
metode ini berdasarkan atas reaksi secra kuantitatif air dengan larutan anhidrat belerang dioksida dan iodium dengan adanya dapar yang bereaksi dengan ion hidrogen.Kelemahan metode ini adalah stoikiometri reaksi tidak tepat dan reprodusibilitas bergantung pada beberapa faktor seperti kadar relatif komponen pereaksi, sifat pelarut inert yang digunakan untuk melarutkan zat dan teknik yang digunakan pada penetapan tertentu. Metode ini juga perlu pengamatan titik akhir titrasi yang bersifat relatif dan diperlukan sistem yang terbebas dari kelembaban udara (Anonim, 1995).
- metode azeotropi ( destilasi toluena )
metode ini efektif untuk penetapan kadar air karena terjadi penyulingan berulang kali di dalam labu dan menggunakan pendingin balik untuk mencegah adanya penguapan berlebih. Sistem yang digunakan tertutup dan tidak dipengaruhi oleh kelembaban (Anonim, 1995).
kadar air ( v/b) = volume air yang terukur / bobot awal simplisia x 100%
- metode gravimetri
Dengan menghitung susut pengeringan hingga tercapai bobot tetap(Anonim, 1995).
d. Kadar minyak atsiri
Tujuan dari penetapan kadar minyak atsiri adalah untuk mengukur berapa banyak kadar minyak atsiri yang terdapat dalam simplisia. Penetapan dengan destilasi air dapat dilakukan karena minyak atsiri tidak dapat bercampur dengan air, sehingga batas antara minyak dan air dapat terlihat dan diukur berapa banyak kadar minyak atsiri yang ada pada simplisia tersebut.
kadar minyak atsiri = volume minyak atsiri yang terukur/bobot sampel x 100%
e. Uji cemaran mikroba
- uji aflatoksin
untuk mengetahi cemaran aflatoksin yang dihasilkan oleh jamur Aspergillus flavus
- uji angka lempeng total
untuk mengetahui jumlah mikroba/ bakteri dalam sampel. Batasan angka lempeng total yang ditetapkan oleh Departemen kesehatan yaitu 10^6 CFU/ gram
- uji angka kapang
untuk mengetahui adanya cemaran kapang.Batasan angka lempeng total yang ditetapkan oleh Departemen kesehatan yaitu 10^4 CFU/ gram.
-Most probably number (MPN)
untuk mengetahui seberapa banyak cemaran bakteri coliform( bakteri yang hidup di saluran pencernaan).
3. Parameter spesifik
Parameter ini digunakan untuk mengetahui identitas kimia dari simplisia.Uji kandungan kimia simplisia digunakan untuk menetapkan kandungan senyawa tertentu dari simplisia. Biasanya dilkukan dengan analisis kromatografi lapis tipis.

Referensi:
Anonim, 1985, Cara Pembuatan Simplisia, Departemen Kesehatan Republik Indonesia, Jakarta.
Anonim, 1995, Farmakope Indonesia edisi IV, Departemen Kesehatan Republik Indonesia, Jakarta.

PENYIAPAN SIMPLISIA TERSTANDAR TANAMAN OBAT

Panen merupakan salah satu  rangkaian tahapan dalam proses budidaya tanaman obat. Waktu, cara pemanenan dan penanganan bahan setelah panen merupakan periode kritis yang sangat menen-tukan kualitas dan kuantitas hasil tanaman. Oleh karena itu waktu, cara panen dan penanganan tanaman yang tepat dan benar merupakan faktor penentu  kua-litas dan kuantitas.  Setiap jenis tanaman memiliki waktu dan  cara panen yang berbeda.  Tanaman yang dipanen buahnya memiliki waktu dan cara panen yang berbeda dengan tanaman yang dipanen berupa biji, rimpang, daun, kulit dan batang. Begitu juga tanaman yang mengalami stres lingkungan akan memiliki waktu panen yang ber-beda meskipun jenis tanamannya sama.  Berikut ini diuraikan saat panen yang tepat untuk beberapa jenis tanaman obat. Biji. Panen tidak bisa dilakukan secara serentak karena perbedaan waktu pematangan dari buah atau polong yang berbeda. Pemanenan biji di-lakukan pada saat biji telah masak fisiologis. Fase ini ditandai dengan sudah maksimalnya pertumbuhan buah atau polong dan biji yang di dalamnya telah terbentuk dengan sempurna. Kulit buah atau polong mengalami perubahan warna misalnya kulit polong yang semula warna hijau kini berubah menjadi agak kekuningan dan mulai mengering. Pemanenan biji pada tanaman se-musim yang sifatnya determinate dilakukan secara serentak pada suatu luasan tertentu. Pemanenan dilaku-kan setelah 60% kulit polong atau kulit biji sudah mulai mongering. Hal ini berbeda dengan tanaman se-musim indeterminate dan tahunan, yang umumnya dipanen secara ber-kala berdasarkan pemasakan dari biji/polong. 
Buah. Buah harus dipanen setelah masak fisiologis dengan cara me-metik.  Pemanenan sebelum masak fisiologis akan menghasilkan buah dengan kualitas yang rendah dan kuantitasnya berkurang.  Buah yang dipanen pada saat masih muda, seperti  buah  mengkudu, jeruk nipis, jambu biji dan buah ceplukan akan memiliki rasa yang tidak enak dan aromanya kurang sedap. Begitu pula halnya dengan pemanenan yang terlambat akan menyebabkan pe-nurunan kualitas karena akan terjadi perombakan bahan aktif yang ter-dapat di dalamnya menjadi zat lain.  Selain itu tekstur buah menjadi lembek dan buah menjadi lebih cepat busuk.
Daun. Pemanenan daun dilakukan pada saat tanaman telah tumbuh maksimal dan sudah memasuki periode matang fisiologis dan dilakukan dengan memangkas tanaman.  Pemangkasan dilakukan dengan menggunakan pisau yang bersih atau gunting stek. Pemanenan yang terlalu cepat  menyebabkan hasil produksi yang diperoleh rendah dan kandungan bahan bahan aktifnya juga rendah, seperti tanaman jati belanda dapat dipanen pada umur 1 - 1,5 tahun, jambu biji pada umur 6 - 7 bulan, cincau 3 - 4 bulan dan lidah buaya pada umur 12 - 18 bulan setelah tanam. Demikian juga dengan pe-manenan yang terlambat menyebab-kan daun mengalami penuaan (se-nescence) sehingga mutunya rendah karena bahan aktifnya sudah ter-degradasi. Pada beberapa tanaman pemanenan yang terlambat akan mempersulit proses panen. 
Rimpang. Untuk jenis rimpang waktu pe-manenan bervariasi tergantung peng-gunaan.  Tetapi  pada umumnya pe-manenan dilakukan pada saat tanam-an berumur 8 - 10 bulan.  Seperti rimpang jahe, untuk  kebutuhan eks-por dalam bentuk segar jahe dipanen pada umur 8 - 9 bulan setelah tanam, sedangkan untuk bibit 10 - 12 bulan.  Selanjutnya untuk keperluan pem-buatan jahe asinan, jahe awetan dan permen dipanen pada umur 4 - 6 bulan karena pada umur tersebut serat dan pati belum terlalu tinggi. Sebagai bahan obat, rimpang di-panen setelah tua yaitu umur 9 - 12 bulan setelah tanam. Untuk temu-lawak pemanenan rimpang dilaku-kan setelah tanaman berumur 10 - 12 bulan. Temulawak yang dipanen pada umur tersebut menghasilkan kadar minyak atsiri dan kurkumin yang tinggi. Penanaman rimpang dilakukan pada saat awal musim hujan dan dipanen pada pertengahan musim kemarau. Saat panen yang tepat ditandai dengan mulai menge-ringnya bagian tanaman yang berada di atas permukaan tanah (daun dan batang semu), misalnya kunyit, temulawak, jahe, dan kencur.
Bunga. Bunga digunakan dalam industri farmasi dan kosmetik dalam bentuk segar maupun kering.  Bunga yang digunakan dalam bentuk segar, pemanenan dilakukan pada saat bunga kuncup atau setelah per-tumbuhannya maksimal. Berbeda  dengan bunga yang digunakan dalam bentuk kering, pemanenan dilakukan pada saat bunga sedang mekar.  Seperti bunga piretrum, bunga yang dipanen dalam keadaan masih kuncup  menghasilkan kadar piretrin yang lebih tinggi dibandingkan dengan bunga yang sudah mekar.
Kayu. Pemanenan kayu dilakukan setelah pada kayu terbentuk senyawa metabolit sekunder secara maksimal.  Umur panen tanaman berbeda-beda tergantung jenis tanaman dan ke-cepatan pembentukan metabolit sekundernya. Tanaman secang baru dapat dipanen setelah berumur 4 sampai 5 tahun, karena apabila dipanen terlalu muda kandungan zat aktifnya seperti tanin dan sappan masih relatif sedikit.
Herba. Pada beberapa tanaman semusim, waktu panen yang tepat adalah pada saat pertumbuhan vegetatif tanaman sudah maksimal dan akan memasuki fase generatif atau dengan kata lain pemanenan dilakukan sebelum ta-naman berbunga. Pemanenan yang dilakukan terlalu awal mengakibat-kan produksi tanaman yang kita dapatkan rendah dan kandungan bahan aktifnya juga rendah.  Sedang-kan jika pemanenan terlambat akan menghasilkan mutu rendah karena jumlah daun berkurang, dan batang tanaman sudah berkayu.  Contohnya tanaman sambiloto sebaiknya di-panen pada umur 3 - 4 bulan, pegagan  pada umur 2 - 3 bulan setelah tanam, meniran pada umur kurang lebih 3,5 bulan atau sebelum berbunga dan tanaman ceplukan dipanen setelah umur 1 - 1,5 bulan atau segera setelah timbul kuncup bunga, terbentuk.
Cara Panen
Pada waktu panen peralatan dan tempat yang digunakan harus bersih dan bebas dari cemaran dan dalam keadaan kering. Alat yang diguna-kan dipilih dengan tepat untuk mengurangi terbawanya bahan atau tanah yang tidak diperlukan.  Seperti rimpang, alat untuk panen dapat menggunakan garpu atau cangkul.  Bahan yang rusak atau busuk harus segera dibuang atau dipisahkan.  Penempatan dalam wadah (keran-jang, kantong, karung dan lain-lain) tidak boleh terlalu penuh sehingga bahan tidak menumpuk dan tidak rusak. Selanjutnya dalam waktu pengangkutan diusahakan supaya bahan tidak terkena panas yang berlebihan, karena dapat menyebab-kan terjadinya proses fermentasi/ busuk.  Bahan juga harus dijaga dari gang-guan hama (hama gudang, tikus dan binatang peliharaan).
Penanganan Pasca Panen
Pasca panen merupakan kelanjut-an dari proses panen terhadap tanaman budidaya atau hasil dari penambangan alam yang fungsinya antara lain untuk membuat bahan hasil panen tidak mudah rusak dan memiliki kualitas yang baik serta mudah disimpan untuk diproses selanjutnya.  Untuk memulai proses pasca panen perlu diperhatikan cara dan tenggang waktu pengumpulan bahan tanaman yang ideal setelah dilakukan proses panen tanaman tersebut.  Selama proses pasca panen sangat penting diperhatikan keber-sihan dari alat-alat dan bahan yang digunakan, juga bagi pelaksananya perlu memperhatikan perlengkapan seperti masker dan sarung tangan.  Tujuan dari pasca panen ini untuk menghasilkan simplisia tanaman obat yang bermutu, efek terapinya tinggi  sehingga memiliki nilai jual yang tinggi. Secara umum faktor-faktor dalam penanganan pasca panen yang perlu diperhatikan adalah sebagai berikut :
Penyortiran (segar)
Penyortiran segar dilakukan setelah selesai panen dengan tujuan untuk memisahkan kotoran-kotoran atau bahan-bahan asing, bahan yang tua dengan yang muda atau bahan yang ukurannya lebih besar atau lebih kecil.  Bahan nabati yang baik memiliki kandungan campuran bahan organik asing tidak lebih dari 2%. Proses penyortiran pertama bertujuan untuk memisahkan bahan yang busuk atau bahan yang muda dan yang tua serta untuk mengurangi jumlah pengotor yang ikut terbawa dalam bahan.
Pencucian
Pencucian bertujuan menghilang-kan kotoran-kotoran dan mengurangi mikroba-mikroba yang melekat pada bahan. Pencucian harus segera di-lakukan setelah panen karena dapat mempengaruhi mutu bahan. Pen-cucian menggunakan air bersih seperti air dari mata air, sumur atau  PAM. Penggunaan air kotor menye-babkan jumlah mikroba pada bahan tidak akan berkurang bahkan akan bertambah.  Pada saat pencucian per-hatikan air cucian dan air bilasan-nya, jika masih terlihat kotor ulangi pencucian/pembilasan sekali atau dua kali lagi. Perlu diperhatikan bahwa pencucian harus dilakukan dalam waktu yang sesingkat mung-kin untuk menghindari larut dan terbuangnya zat yang terkandung dalam bahan. Pencucian bahan dapat dilakukan dengan beberapa cara antara lain :
a. Perendaman bertingkat
Perendamana biasanya dilakukan pada bahan yang tidak banyak mengandung kotoran seperti daun, bunga, buah dll.  Proses perendaman  dilakukan beberapa kali pada wadah dan air yang berbeda, pada rendaman pertama air cuciannya mengandung kotoran paling banyak.  Saat perendaman kotoran-kotoran yang melekat kuat pada bahan dapat dihilangkan langsung dengan tangan.  Metoda ini akan menghemat peng-gunaan air, namun sangat mudah melarutkan zat-zat yang terkandung dalam bahan.
b. Penyemprotan
Penyemprotan biasanya dilakukan pada bahan yang kotorannya banyak melekat pada bahan seperti rimpang, akar, umbi dan lain-lain.  Proses penyemprotan dilakukan de-ngan menggunakan air yang ber-tekanan tinggi. Untuk lebih me-nyakinkan kebersihan bahan, ko-toran yang melekat kuat pada bahan dapat dihilangkan langsung dengan tangan. Proses ini biasanya meng-gunakan air yang cukup banyak, namun dapat mengurangi resiko hilang/larutnya kandungan dalam bahan.
c. Penyikatan (manual maupun oto-matis)
Pencucian dengan menyikat dapat dilakukan terhadap jenis bahan yang keras/tidak lunak dan kotoran-nya melekat sangat kuat.  Pencucian ini memakai alat bantu sikat yang di- gunakan bentuknya bisa bermacam-macam, dalam hal ini perlu diper-hatikan kebersihan dari sikat yang digunakan. Penyikatan dilakukan terhadap bahan secara perlahan dan teratur agar tidak merusak bahannya.  Pem-bilasan dilakukan pada bahan yang sudah disikat. Metode pencuci-an ini dapat menghasilkan bahan yang lebih bersih dibandingkan de-ngan metode pencucian lainnya, namun meningkatkan resiko kerusa-kan bahan, sehingga merangsang tumbuhnya bakteri atau mikro-organisme.
Penirisan/pengeringan
Setelah pencucian, bahan lang-sung ditiriskan di rak-rak pengering. Khusus untuk bahan rimpang pen-jemuran dilakukan  selama 4 - 6 hari. Selesai pengeringan dilakukan kem-bali penyortiran apabila bahan lang-sung digunakan dalam bentuk segar sesuai dengan permintaan. Contoh-nya untuk rimpang jahe, perlu dilakukan penyortiran sesuai standar perdagangan, karena mutu bahan menentukan harga jual. Berdasarkan standar perdagangan, mutu rimpang jahe segar dikategorikan sebagai berikut :
  • Mutu I : bobot 250 g/rimpang, kulit tidak terkelupas, tidak me-ngandung benda asing dan tidak berjamur.
  • Mutu II : bobot 150 - 249 g/rim-pang, kulit tidak terkelupas, tidak mengandung benda asing dan tidak berjamur.
  • Mutu III : bobot sesuai hasil analisis, kulit yang terkelupas maksimum 10%, benda asing maksimum 3%, kapang mak-simum 10%.
Untuk ekspor jahe dalam bentuk asinan jahe, dipanen pada  umur 3 - 4 bulan, karena pada umur tersebut serat dan pati jahe masih sedikit.  Mutu jahe yang diinginkan adalah bobot 60 - 80 g/rimpang. Selesai penyortiran bahan langsung dikemas dengan menggunakan jala plastik atau sesuai dengan permintaan.  Di samping dijual dalam bentuk segar, rimpang juga dapat dijual dalam bentuk kering yaitu simplisia yang dikeringkan.
Perajangan
Perajangan pada bahan dilakukan untuk mempermudah proses selanjutnya seperti pengeringan, pengemasan, penyulingan minyak atsiri dan penyimpanan.  Perajangan biasanya hanya dilakukan pada bahan yang ukurannya agak besar dan tidak lunak seperti akar, rim-pang, batang, buah dan lain-lain.  Ukuran perajangan tergantung dari bahan yang digunakan dan ber-pengaruh terhadap kualitas simplisia yang dihasilkan. Perajangan terlalu tipis dapat mengurangi zat aktif  yang terkandung dalam bahan.  Sedangkan jika terlalu tebal, maka pengurangan kadar air dalam bahan agak sulit dan memerlukan waktu yang lama dalam penjemuran  dan kemungkinan besar bahan mudah ditumbuhi oleh jamur.
Ketebalan perajangan untuk rimpang temulawak adalah sebesar 7 - 8 mm, jahe, kunyit dan kencur 3 - 5 mm.  Perajangan bahan dapat dilakukan secara manual dengan pisau yang tajam dan terbuat dari steinlees ataupun dengan mesin pemotong/ perajang.  Bentuk irisan split atau slice tergantung tujuan pemakaian.  Untuk tujuan mendapatkan minyak atsiri yang tinggi bentuk irisan sebaiknya adalah membujur (split) dan jika ingin bahan lebih cepat kering bentuk irisan sebaiknya me-lintang (slice).
Pengeringan
Pengeringan adalah suatu cara pengawetan atau pengolahan pada bahan dengan cara mengurangi kadar air, sehingga proses pem-busukan dapat terhambat.  Dengan demikian dapat dihasilkan simplisia terstandar, tidak mudah rusak dan tahan disimpan dalam waktu yang lama Dalam proses ini, kadar air dan reaksi-reaksi zat aktif dalam bahan akan berkurang, sehingga suhu dan waktu pengeringan perlu diperhati-kan.  Suhu pengeringan tergantung pada jenis bahan yang dikeringkan.  Pada umumnya suhu pengeringan  adalah antara 40 - 600C dan hasil yang baik dari proses pengeringan adalah simplisia yang mengandung kadar air 10%.  Demikian pula de-ngan waktu pengeringan juga ber-variasi, tergantung pada jenis bahan yang dikeringkan seperti rimpang, daun, kayu ataupun bunga.  Hal lain yang perlu diperhatikan dalam pro-ses pengeringan adalah kebersihan (khususnya pengeringan mengguna-kan sinar matahari), kelembaban udara, aliran udara dan tebal bahan (tidak saling menumpuk). Penge-ringan bahan dapat dilakukan secara tradisional dengan menggunakan sinar matahari ataupun secara mo-dern dengan menggunakan alat pe-ngering seperti oven, rak pengering, blower ataupun dengan fresh dryer.
Pengeringan hasil rajangan dari temu-temuan dapat dilakukan de-ngan menggunakan sinar matahari, oven, blower dan fresh dryer pada suhu 30 - 500C.  Pengeringan pada suhu terlalu tinggi dapat merusak komponen aktif, sehingga mutunya dapat menurun. Untuk irisan rim-pang jahe dapat dikeringkan meng-gunakan alat pengering energi surya, dimana  suhu pengering dalam ruang pengering berkisar antara 36 - 450C dengan tingkat kelembaban 32,8 - 53,3% menghasilkan kadar minyak atsiri lebih tinggi dibandingkan dengan pengeringan matahari lang-sung maupun oven.  Untuk irisan temulawak yang dikeringkan dengan sinar matahari langsung, sebelum dikeringkan terlebih dulu irisan rimpang direndam dalam larutan asam sitrat 3% selama 3 jam. Selesai peren-aman irisan dicuci kembali sampai bersih, ditiriskan kemudian  dijemur dipanas matahari. Tujuan dari perendaman adalah untuk mencegah terjadinya degradasi kur-kuminoid pada simplisia pada saat penjemuran juga mencegah peng-uapan minyak atsiri yang berlebihan. Dari hasil analisis diperoleh kadar minyak atsirinya 13,18% dan kur-kumin 1,89%. Di samping meng-gunakan sinar matahari langsung, penjemuran juga dapat dilakukan dengan menggunakan blower pada suhu 40 - 500C.  Kelebihan dari alat ini adalah waktu  penjemuran lebih singkat yaitu sekitar 8 jam, di-bandingkan dengan sinar matahari membutuhkan waktu lebih dari 1 minggu. Pelain kedua jenis pengeri-ng tersebut juga terdapat alat pengering fresh dryer, dimana suhunya hampir sama dengan suhu ruang, tempat tertutup dan lebih higienis. Kelemahan dari alat ter-sebut waktu pengeringan selama 3 hari. Untuk daun  atau herba, penge-ringan dapat dilakukan dengan me-nggunakan sinar matahari di dalam tampah yang ditutup dengan kain hitam, menggunakan alat pengering fresh dryer atau cukup dikering-anginkan saja.
Pengeringan dapat menyebabkan perubahan-perubahan hidrolisa enzi-matis, pencokelatan, fermentasi dan oksidasi.  Ciri-ciri waktu pengering-an sudah berakhir apabila daun atau-pun temu-temuan sudah dapat di-patahkan dengan mudah. Pada umumnya bahan (simplisia) yang sudah kering memiliki kadar air ± 8 - 10%.  Dengan jumlah kadar air tersebut kerusakan bahan dapat ditekan baik dalam pengolahan mau-pun waktu penyimpanan.
Penyortiran (kering).
Penyortiran dilakukan bertujuan untuk memisahkan benda-benda asing yang terdapat pada simplisia, misalnya akar-akar, pasir, kotoran unggas atau benda asing lainnya.  Proses penyortiran merupakan tahap akhir dari pembuatan simplisia kering sebelum dilakukan pengemasan, penyimpanan atau pengolahan lebih lanjut. Setelah penyortiran simplisia ditimbang untuk mengetahui rendemen hasil dari proses pasca panen yang dilakukan.
Pengemasan
Pengemasan dapat dilakukan terhadap simplisia yang sudah di-keringkan.  Jenis kemasan yang di-gunakan dapat berupa plastik, kertas maupun karung goni. Persyaratan jenis kemasan yaitu dapat menjamin mutu produk yang dikemas, mudah dipakai, tidak mempersulit pena-nganan, dapat melindungi isi pada waktu pengangkutan, tidak beracun dan tidak bereaksi dengan isi dan kalau boleh mempunyai bentuk dan rupa yang menarik.
Berikan label yang jelas pada tiap kemasan tersebut yang isinya menuliskan ; nama bahan, bagian dari tanaman bahan yang digunakan, tanggal pengemasan, nomor/kode produksi, nama/alamat penghasil, berat bersih, metode pe-nyimpanan.
Penyimpanan
Penyimpanan simplisia dapat di-lakukan  di ruang biasa (suhu kamar) ataupun di ruang ber AC. Ruang tempat penyimpanan harus bersih, udaranya cukup kering dan ber-ventilasi.  Ventilasi harus cukup baik karena hama menyukai udara yang lembab dan panas. Perlakuan sim-plisia dengan iradiasi sinar gamma dosis 10 kGy dapat menurunkan jumlah patogen yang dapat meng-kontaminasi simplisia tanaman obat (Berlinda dkk, 1998). Dosis ini tidak merubah kadar air dan kadar minyak atsiri simplisia selama penyimpanan 3 - 6 bulan.  Jadi sebelum disimpan pokok utama yang harus diperhati-kan adalah cara penanganan yang tepat dan higienes. Hal-hal yang perlu diperhatikan mengenai tempat penyimpanan simplisia adalah :
  •  Gudang harus terpisah dari tem-pat penyimpanan bahan lainnya ataupun penyimpanan alat dan dipelihara dengan baik.
  •  Ventilasi udara cukup baik dan bebas dari kebocoran atau ke-mungkinan masuk air hujan.
  • Suhu gudang tidak melebihi 300C.
  • Kelembabab udara sebaiknya di-usahakan serendah mungkin (650 C) untuk mencegah terjadinya penyerapan air. Kelembaban udara yang tinggi dapat memacu pertumbuhan mikroorganisme se-hingga menurunkan mutu bahan baik dalam bentuk segar maupun kering.
  • Masuknya sinar matahari lang-sung menyinari simplisia harus dicegah.
  •  Masuknya hewan, baik serangga maupun tikus yang sering me-makan simplisia yang disimpan harus dicegah.

(Sumber: Bagem Sembiring, Warta Puslitbangbun Vol.13 No. 2, Agustus 2007)

FLAVONOID


SENYAWA FLAVONOID
BAB I
PENDAHULUAN

A. Latar Belakang
Sebagian besar senyawa organik bahan alam adalah senyawa-senyawa aromatic. Senyawa-senyawa ini tersebar luas sebagai zat warna alam yang menyebabkan warna pada bunga, kayu pohon tropis, bermacam-macam kapang dan lumut termasuk zat alizarin.
Senyawa aromatik ini mengandung cincin karboaromatik yaitu cincin aromatic yang hanya terdiri dari atom karbon seperti benzene, naftalen dan antrasen. Cincin karboaromatik ini biasanya tersubstitusi oleh satu atau lebih gugus hidroksil atau gugus lainnya yang ekivalen ditinjau dari biogenetiknya. Oleh karena itu senyawa bahan alam aromatic ini sering disebut sebagai senyawa-senyawa fenol walaupun sebagian diantaranya bersifat netral karena tidak mengandung gugus fenol dalam keadaan bebas.
Dalam makalah ini akan diuraikan tentang sejarah flavonoid, macam-macam flavonoid dari yang sederhana sampai ke senyawa kompleks flavonoid, gugus fungsi yang terdapat pada flavonoid, sintesis dan isolasi flavonoid, sifat-sifat flavonoid, serta tumbuhan-tumbuhan yang mengandung flavonoid.
B. Rumusan Masalah
Berdasarkan latar belakang masalah di atas, maka dapat dirumuskan masalah dalam makalah ini, yaitu:
1. Bagaimana sejarah senyawa flavonoid itu dan klasifikasinya?
2. Bagaimanakah sifat-sifat kimia dan fisika dari flavonoid dibandingkan dengan golongan terpen?
3. Gugus fungsi apa yang terdapat pada flavonoid?
4. Pada tumbuhan apa sajakah flavonoid berada?
5. Bagaimana cara isolasi dan identifikasi dari senyawa flavonoid?
C. Tujuan Penulisan
Adapun tujuan dari penulisan makalah ini adalah:
1. Untuk mengetahui sejarah dari senyawa flavonoid dan klasifikasinya.
2. Untuk mengetahui sifat-sifat kimia dan fisika dari senyawa flavonoid dan membandingkannya dengan terpen.
3. Untuk mengetahui gugus fungsi apa saja yang terdapat pada flavonoid
4. Untuk mengetahui tumbuh-tumbuhan yang mengandung flavonoid.
5. Untuk mengetahui isolasi dan identifikasi dari senyawa flavonoid.
D. Manfaat Penulisan
Makalah ini diharapkan dapat memberikan manfaat bagi mahasiswa, untuk menambah wawasan dan sebagai bahan pelajaran untuk dapat mendeskripsikan senyawa flavonoid.
















BAB II
PEMBAHASAN

A. Sejarah Senyawa Flavonoid
Ilmu kimia senyawa-senyawa fenol yang ditemukan di alam mengalami kemajuan yang pesat setelah Kekule berhasil menetapkan struktur cincin aromatic. Bahkan, struktur dari beberapa senyawa fenol telah dapat ditetapkan sejak abad ke-19. Oleh karena itu, ilmu kimia senyawa-senyawa fenol kadang-kadang dianggap sudah usang. Akan tetapi topic-topik yang menarik mengenai senyawa-senyawa itu terus menerus muncul dengan adanya penemuan-penemuan baru. Dengan demikian, senyawa-senyawa fenol dapat dianggap sebagai cabang dari ilmu kimia bahan alam yang terus berkembang.
Sifat-sifat kimia dari senyawa fenol adalah sama, akan tetapi dari segi biogenetic senyawa-senyawa ini dapat dibedakan atas dua jenis utama, yaitu:
1. Senyawa fenol yang berasal dari asam shikimat atau jalur shikimat.
2. Senyawa fenol yang berasal dari jalur asetat-malonat.
Ada juga senyawa-senyawa fenol yang berasal dari kombinasi antara kedua jalur biosintesa ini yaitu senyawa-senyawa flanonoida.
Tidak ada benda yang begitu menyolok seperti flavonoida yang memberikan kontribusi keindahan dan kesemarakan pada bunga dan buah-buahan di alam. Flavin memberikan warna kuning atau jingga, antodianin memberikan warna merah, ungu atau biru, yaitu semua warna yang terdapat pada pelangi kecuali warna hijau. Secara biologis flavonoida memainkan peranan penting dalam kaitan penyerbukan tanaman oleh serangga. Sejumlah flavonoida mempunyai rasa pahit sehingga dapat bersifat menolak sejenis ulat tertentu.

Senyawa flavonoid adalah suatu kelompok fenol yang terbesar yang ditemukan di alam. Senyawa-senyawa ini merupakan zat warna merah, ungu dan biru dan sebagai zat warna kuning yang ditemukan dalam tumbuh-tumbuhan.
Flavonoid merupakan pigmen tumbuhan dengan warna kuning, kuning jeruk, dan merah dapat ditemukan pada buah, sayuran, kacang, biji, batang, bunga, herba, rempah-rempah, serta produk pangan dan obat dari tumbuhan seperti minyak zaitun, teh, cokelat, anggur merah, dan obat herbal. Senyawa ini berperan penting dalam menentukan warna, rasa, bau, serta kualitas nutrisi makanan. Tumbuhan umumnya hanya menghasilkan senyawa flavonoid tertentu. Keberadaan flavonoid pada tingkat spesies, genus atau familia menunjukkan proses evolusi yang terjadi sepanjang sejarah hidupnya. Bagi tumbuhan, senyawa flavonoid berperan dalam pertahanan diri terhadap hama, penyakit, herbivori, kompetisi, interaksi dengan mikrobia, dormansi biji, pelindung terhadap radiasi sinar UV, molekul sinyal pada berbagai jalur transduksi, serta molekul sinyal pada polinasi dan fertilitas jantan.
Senyawa flavonoid untuk obat mula-mula diperkenalkan oleh seorang Amerika bernama Gyorgy (1936). Secara tidak sengaja Gyorgy memberikan ekstrak vitamin C (asam askorbat) kepada seorang dokter untuk mengobati penderita pendarahan kapiler subkutaneus dan ternyata dapat disembuhkan. Mc.Clure (1986) menemukan pula oleh bahwa senyawa flavonoid yang diekstrak dari Capsicum anunuum serta Citrus limon juga dapat menyembuhkan pendarahan kapiler subkutan. Mekanisme aktivitas senyawa tersebut dapat dipandang sebagai fungsi „alat komunikasi
(molecular messenger} dalam proses interaksi antar sel, yang selanjutnya dapat berpengaruh terhadap proses metabolisme sel atau mahluk hidup yang bersangkutan, baik bersifat negatif (menghambat) maupun bersifat positif (menstimulasi).

B. Klasifikasi Senyawa Flavonoid
Flavonoid merupakan metabolit sekunder yang paling beragam dan tersebar luas. Sekitar 5-10% metabolit sekunder tumbuhan adalah flavonoid, dengan struktur kimia dan peran biologi yang sangat beragam Senyawa ini dibentuk dari jalur shikimate dan fenilpropanoid, dengan beberapa alternatif biosintesis. Flavonoid banyak terdapat dalam tumbuhan hijau (kecuali alga), khususnya tumbuhan berpembuluh. Flavonoid sebenarnya terdapat pada semua bagian tumbuhan termasuk daun, akar, kayu, kulit, tepung sari, nectar, bunga, buah buni dan biji. Kira-kira 2% dari seluruh karbon yang difotosintesis oleh tumbuh-tumbuhan diubah menjadi flavonoid. Flavonoid merupakan turunan fenol yang memiliki struktur dasar fenilbenzopiron (tokoferol), dicirikan oleh kerangka 15 karbon (C6-C3-C6) yang terdiri dari satu cincin teroksigenasi dan dua cincin aromatis. Substitusi gugus kimia pada flavonoid umum- nya berupa hidroksilasi, metoksilasi, metilasi dan glikosilasi. Klasifikasi flavonoid sangat beragam, di antaranya ada yang mengklasifikasikan flavonoid menjadi flavon, flavonon, isoflavon, flavanol, flavanon, antosianin, dan kalkon. Lebih dari 6467 senyawa flavonoid telah diidentifikasi dan jumlahnya terus meningkat. Kebanyakan flavonoid berbentuk monomer, tetapi terdapat pula bentuk dimer (biflavonoid), trimer, tetramer, dan polimer.
Istilah flavonoid diberikan untuk senyawa-senyawa fenol yang berasal dari kata flavon, yaitu nama dari salah satu flavonoida yang terbesar jumlahnya dalam tumbuhan. Senyawa-senyawa flavon ini mempunyai kerangka 2-fenilkroman, dimana posisi orto dari dari cincin A dan atom karbon yang terikat pada cincin B dari 1,3 diarilpropana dihubungkan oleh jembatan oksigen sehingga membentuk cincin heterosiklik yang baru (cincin C).
Senyawa-senyawa flavonoid terdiri dari beberapa jenis tergantung pada tingkat oksidasi dari rantai propane dari system 1,3-diarilpropana. Flavon, flavonol dan antosianidin adalah jenis yang banyak ditemukan di alam sehingga sering disebut sebagai flavonoida utama. Banyaknya senyawa flavonoida ini disebabkan oleh berbagai tingkat hidroksilasi, alkoksilasi atau glikosilasi dari struktur tersebut.
Senyawa-senyawa isoflavonoida dan neoflavonoida hanya ditemukan dalam beberapa jenis tumbuhan, terutama suku leguminosae.
Masing-masing jenis senyawa flavonoida mempunyai struktur dasar tertentu. Flavonoida mempunyai beberapa cirri struktur yaitu: cincin A dari struktur flavonoida mempunyai pola oksigenasi yang berselang-seling yaitu pada posisi 2,4 dan 6. Cincin B flavonoida mempunyai satu gugus fungsi oksigen pada posisi para atau dua pada posisi para dan meta aau tiga pada posisi satu di para dan dua di meta. Cincin A selalu mempunyai gugus hidroksil yang letaknya sedemikian rupa sehingga memberikan kemungkinan untuk terbentuk cincin heterosiklik dalam senyawa trisiklis.
Flavonoid mempunyai kerangka dasar karbon yang terdiri dari 15 atom karbon, dimana dua cincin benzene (C6) terikat pada suatu rantaipropana (C3) sehingga membentuk suatu susunan C6-C3-C6. Susunan ini dapat menghasilkan tiga jenis struktur senyawa flavonoida, yaitu:
1. Flavonoida atau 1,3-diarilpropana

Beberapa senyawa flavonoida yang ditemukan di alam adalah sebagai berikut:



a. Antosianin



Antosianin merupakan pewarna yang paling penting dan paling tersebar luas dalam tumbuhan. Secara kimia antosianin merupakan turunan suatu struktur aromatik tunggal, yaitu sianidin, dan semuanya terbentuk dari pigmen sianidin ini dengan penambahan atau pengurangan gugus hidroksil atau dengan metilasi. Antosianin tidak mantap dalam larutan netral atau basa. Karena itu antosianin harus diekstraksi dari tumbuhan dengan pelarut yang mengandung asam asetat atau asam hidroklorida (misalnya metanol yang mengandung HCl pekat 1%) dan larutannya harus disimpan di tempat gelap serta sebaiknya didinginkan. Antosianidin ialah aglikon antosianin yang terbentuk bila antosianin dihidrolisis dengan asam. Antosianidin terdapat enam jenis secara umum, yaitu : sianidin, pelargonidin, peonidin, petunidin, malvidin dan delfinidin.
Antosianidin adalah senyawa flavonoid secara struktur termasuk kelompok flavon. Glikosida antosianidin dikenal sebagai antosianin. Nama ini berasal dari bahasa Yunani antho-, bunga dan kyanos-, biru. Senyawa ini tergolong pigmen dan pembentuk warna pada tanaman yang ditentukan oleh pH dari lingkungannya. Senyawa paling umum adalah antosianidin, sianidin yang terjadi dalam sekitar 80 persen dari pigmen daun tumbuhan, 69 persen dari buah-buahan dan 50 persen dari bunga.
Kebanyakan warna bunga merah dan biru disebabkan antosianin. Bagian bukan gula dari glukosida itu disebut suatu antosianidin dan merupakan suatu tipe garam flavilium. Warna tertentu yang diberikan oleh suatu antosianin, sebagian bergantung pada pH bunga. Warna biru bunga cornflower dan warna merah bunga mawar disebabkan oleh antosianin yang sama, yakni sianin. Dalam sekuntum mawar merah, sianin berada dalam bentuk fenol. Dalam cornflower biru, sianin berada dalam bentuk anionnya, dengan hilangnya sebuah proton dari salah satu gugus fenolnya. Dalam hal ini, sianin serupa dengan indikator asam-basa.
Istilah garam flavilium berasal dari nama untuk flavon, yang merupakan senyawa tidak berwarna. Adisi gugus hidroksil menghasilkan flavonol, yang berwarna kuning.





Dalam pengidentifikasian antosianin atau flavonoid yang kepolarannya rendah, daun segar atau daun bunga jangan dikeringkan tetapi harus digerus dengan MeOH. Ekstraksi hampir segera terjadi seperti terbukti dari warna larutan. Flavonoid yang kepolarannya rendah dan yang kadang-kadang terdapat pada bagian luar tumbuhan, paling baik diisolasi hanya dengan merendam bahan tumbuhan segar dalam heksana atau eter selama beberapa menit.
Stabilitas Antosianin
Antosianin secara umum mempunyai stabilitas yang rendah. Pada pemanasan yang tinggi, kestabilan dan ketahanan zat warna antosianin akan berubah dan mengakibatkan kerusakan. Selain mempengaruhi warna antosianin, pH juga mempengaruhi stabilitasnya, dimana dalam suasana asam akan berwarna merah dan suasana basa berwarna biru. Antosianin lebih stabil dalam suasana asam daripada dalam suasana alkalis ataupun netral. Zat warna ini juga tidak stabil dengan adanya oksigen dan asam askorbat. Asam askorbat kadang melindungi antosianin tetapi ketika antosianin menyerap oksigen, asam askorbat akan menghalangi terjadinya oksidasi. Pada kasus lain, jika enzim menyerang asam askorbat yang akan menghasilkan hydrogen peroksida yang mengoksidasi sehingga antosianin mengalami perubahan warna.
Warna pigmen antosianin merah, biru, violet, dan biasanya dijumpai pada bunga, buah-buahan dan sayur-sayuran. Dalam tanaman terdapat dalam bentuk glikosida yaitu membentuk ester dengan monosakarida (glukosa, galaktosa, ramnosa dan kadang-kadang pentosa). Sewaktu pemanasan dalam asam mineral pekat, antosianin pecah menjadi antosianidin dan gula. Pada pH rendah (asam) pigmen ini berwarna merah dan pada pH tinggi berubah menjadi violet dan kemudian menjadi biru. Pada umumnya, zat-zat warna distabilkan dengan penambahan larutan buffer yang sesuai. Jika zat warna tersebut memiliki pH sekitar 4 maka perlu ditambahkan larutan buffer asetat, demikian pula zat warna yang memiliki pH yang berbeda maka harus dilakukan penyesuaian larutan buffer.
Warna merah bunga mawar dan biru pada bunga jagung terdiri dari pigmen yang sama yaitu sianin. Perbedaannya adalah bila pada bunga mawar pigmennya berupa garam asam sedangkan pada bunga jagung berupa garam netral. Konsentrasi pigmen juga sangat berperan dalam menentukan warna. Pada konsentrasi yang encer antosianin berwarna biru, sebaliknya pada konsentrasi pekat berwarna merah dan konsentrasi biasa berwarna ungu. Adanya tanin akan banyak mengubah warna antosianin. Dalam pengolahan sayur-sayuran adanya antosianin dan keasaman larutan banyak menentukan warna produk tersebut. Misalnya pada pemasakan bit atau kubis merah. Bila air pemasaknya mempunyai pH 8 atau lebih (dengan penambahan soda) maka warna menjadi kelabu violet tetapi bila ditambahkan cuka warna akan mejadi merah terang kembali. Tetapi jarang makanan mempunyai pH yang sangat tinggi. Dengan ion logam, antosianin membentuk senyawa kompleks yang berwarna abu-abu violet. Karena itu pada pengalengan bahan yang mengandung antosianin, kalengnya perlu mendapat lapisan khusus (lacquer).
b. Flavonol
flavonol lazim sebagai konstituen tanaman yang tinggi, dan terdapat dalam berbagai bentuk terhidroksilasi. Flavonol alami yang paling sederhana adalah galangin, 3,5,7 –tri-hidroksiflavon; sedangkan yang paling rumit, hibissetin adalah 3,5,7,8,3’,4’,5’ heptahidroksiflavon. Bentuk khusus hidroksilasi (C6(A)-C3-C6(B), dalam mana C6 (A) adalah turunan phloroglusional, dan cincin B adalah 4-atau 3,4-dihidroksi, diperoleh dalam 2 flavonol yang paling lazim yaitu kaempferol dan quirsetin. Hidroksiflavonol, seperti halnya hidroksi flavon, biasanya terdapat dalam tanaman sebagai glikosida. Flavonol kebanyakan terdapat sebagai 3-glikosida. Meskipun flavon, flavonol, dan flavanon pada umumnya terdistribusi melalui tanaman tinggi tetapi tidak terdapat hubungan khemotakson yang jelas. Genus Melicope mengandung melisimpleksin dan ternatin, dan genus citrus mengandung nobiletin, tangeretin dan 3’,4’,5,6,7-pentametoksiflavon.

Struktur flavonol
Flavonol Alam


c. Flavonon

d. Khalkon
polihidroksi khalkon terdapat dalam sejumlah tanaman, namun terdistribusinya di alam tidak lazim. Alasan pokok bahwa khalkon cepat mengalami isomerasi menjadi flavanon dalam satuan keseimbangan. Bila khalkon 2,6-dihidroksilasi, isomer flavanon mngikat 5 gugus hidroksil, dan stabilisasi mempengaruhi ikatan hydrogen 4-karbonil-5-hidroksil maka menyebabkan keseimbangan khalkon-flavon condong ke arah flavanon. Hingga khalkon yang terdapat di alam memiliki gugus 2,4-hidroksil atau gugus 2-hidroksil-6-glikosilasi.

Struktur khalkon
Beberapa khalkon misalnya merein, koreopsin, stillopsin, lanseolin yang terdapat dalam tanaman, terutama sebagai pigmen daun bunga berwarna kuning, kebanyakan terdapat dalam tanaman Heliantheaetribe, Coreopsidinae subtribe, dan family Compositea.
e. Auron (Cincin A –COCO CH2 – Cincin B)

Auron atau system cincin benzalkumaranon dinomori sebagai berikut :






e. Dihidroflavonol





f. Dihidrokhalkon
Meskipun dihidrokhalkon jarang terdapat di alam, namun satu senyawa yang penting yaitu phlorizin merupakan konstituen umum family Rosaceae juga terdapat dalam jenis buah-buahan seperti apel dan pear. Phlorizin telah lama dikenal dalam bidang farmasi, ia memiliki kesanggupan menghasilkan kondisi seperti diabetes.
Phlorizin merupakan β-D-glukosida phloretin. Phloretin mudah terurai oleh alkali kuat menjadi phloroglusional dan asam p-hidroksihidrosinamat. Jika glukosida phlorizin dipecah dengan alkali dengan cara yang sama, maka ternyata sisa glukosa tidak dapat terlepas dan dihasilkan phloroglusinol β-O-glukosida.

g. Flavon
Flavon mudah dipecah oleh alkali menghasilkan diasil metan atau tergantung pada kondisi reaksi, asam benzoate yang diturunkan dari cincin A. flavon stabil terhadap asam kuat dan eternya mudah didealkilasi dengan penambahan HI atau HBr, atau dengan aluminium klorida dalam pelarut inert. Namun demikian, selama demetilasi tata ulang sering teramati; oleh pengaruh asam kuat dapat menyebabkan pembukaan cincin pada cara yang lain. Sebagai contoh demetilasi 5,8-dimetoksiflavon dengan HBr dalam asam asetat menghasilkan 5,6 dihidroksiflavon (persamaan 1). Dalam keadaan khusus pembukaan lanjut dapat terjadi (persamaan 2).
Demetilasi gugus 5-metoksi dalam polimetoksiflavon segera terjadi pada kondisi yang cocok, sehingga 5-hidroksi-polimetoksiflavon mudah dibuat.



Flavon alam






























2. Isoflavonoida atau 1,2-diarilpropana

Isoflavon terdiri atas struktur dasar C6-C3-C6, secara alami disintesa oleh tumbuh-tumbuhan dan senyawa asam amino aromatik fenilalanin atau tirosin. Biosintesa tersebut berlangsung secara bertahap dan melalui sederetan senyawa antara yaitu asam sinnamat, asam kumarat, calkon, flavon dan isoflavon. Berdasarkan biosintesa tersebut maka isoflvon digolongkan sebagai senyawa metabolit sekunder. Isoflavon termasuk dalam kelompok flavonoid (1,2-diarilpropan) dan merupakan kelompok yang terbesar dalam kelompok tersebut. Meskipun isoflavon merupakan salah satu metabolit sekunder, tetapi ternyata pada mikroba seperti bakteri, algae, jamur dan lumut tidak mengandung isoflavon, karena mikroba tersebut tidak mempunyai kemampuan untuk mensintesanya.
Jenis senyawa isoflavon di alam sangat bevariasi. Diantaranya telah berhasil diidentifikasi struktur kimianya dan diketahui fungsi fisiologisnya, misalnya isoflavon, rotenoid dan kumestan, serta telah dapat dimanfaatkan untuk obat-obatan. Berbagai potensi senyawa isoflavon untuk keperluan kesehatan antara lain:
1. Anti-inflamasi
Mekanisme anti-inflamasi terjadi melalui efek penghambatan jalur metabolisme asam arachidonat, pembentukan prostaglandin, pelepasan histamin, atau aktivitas „radical scavenging’ suatu molekul. Melalui mekanisme tersebut, sel lebih terlindung dari pengaruh negatif, sehingga dapat meningkatkan viabilitas sel. Senyawa flavonoid yang dapat berfungsi sebagai anti-inflamasi adalah toksifolin, biazilin, haematoksilin, gosipin, prosianidin, nepritin, dan lain-lain.
2. Anti-tumor/Anti-kanker
Senyawa isoflavon yang berpotensi sebagai antitumor/antikanker adalah genistein yang merupakan isoflavon aglikon (bebas). Genistein merupakan salah satu komponen yang banyak terdapat pada kedelai dan tempe. Penghambatan sel kanker oleh genistein, melalui mekanisme sebagai berikut : (1) penghambatan pembelahan/proliferasi sel (baik sel normal, sel yang terinduksi oleh faktor pertumbuhan sitokinin, maupun sel kanker payudara yang terinduksi dengan nonil-fenol atau bi-fenol A) yang diakibatkan oleh penghambatan pembentukan membran sel, khususnya penghambatan pembentukan protein yang mengandung tirosin; (2) penghambatan aktivitas enzim DNA isomerase II; (3) penghambatan regulasi siklus sel; (4) sifat antioksidan dan anti-angiogenik yang disebabkan oleh sifat reaktif terhadap senyawa radikal bebas; (5) sifat mutagenik pada gen endoglin (gen transforman faktor pertumbuhan betha atau TGFβ). Mekanisme tersebut dapat berlangsung apabila konsentrasi genestein lebih besar dari 5μM.
3. Anti-virus
Mekanisme penghambatan senyawa flavonoida pada virus diduga terjadi melalui penghambatan sintesa asam nukleat (DNA atau RNA) dan pada translasi virion atau pembelahan dari poliprotein. Percobaan secara klinis menunjukkan bahwa senyawa flavonoida tersebut berpotensi untuk penyembuhan pada penyakit demam yang disebabkan oleh rhinovirus, yaitu dengan cara pemberian intravena dan juga terhadap penyakit hepatitis B. Berbagai percobaan lain untuk pengobatan penyakit liver masih terus berlangsung.
4. Anti-allergi
Aktivitas anti-allergi bekerja melalui mekanisme sebagai berikut : (1) penghambatan pembebasan histamin dari sel-sel „mast, yaitu sel yang mengandung granula, histamin, serotonin, dan heparin; (2) penghambatan pada enzim oxidative nukleosid-3,5 siklik monofast fosfodiesterase, fosfatase, alkalin, dan penyerapan Ca; (3) berinteraksi dengan pembentukan fosfoprotein. Senyawa-senyawa flavonoid lainnya yang digunakan sebagai anti-allergi antara lain terbukronil, proksikromil, dan senyawa kromon.
5. Penyakit kardiovaskuler
Berbagai pengaruh positif isoflavon terhadap sistem peredaran darah dan penyakit jantung banyak ditunjukkan oleh para peneliti pada aspek berlainan. Khususnya isoflavon pada tempe yang aktif sebagai antioksidan, yaitu 6,7,4- trihidroksi isoflavon (Faktor-II), terbukti berpotensi sebagai anti kotriksi pembuluh darah (konsentrasi 5μg/ml) dan juga berpotensi menghambat, pembentukan LDL (low density lipoprotein). Dengan demikian isoflavon dapat mengurangi terjadinya arterosclerosis pada pembuluh darah. Pengaruh isoflavon terhadap penurunan tekanan darah dan resiko CVD (cardio vascular deseases) banyak dihubungkan dengan sifat hipolipidemik dan hipokholesteremik senyawa isoflavon.
6. Estrogen dan Osteoporosis
Pada wanita menjelang menopause, produksi estrogen menurun sehingga menimbulkan berbagai gangguan. Estrogen tidak saja berfungsi dalam sistem reproduksi, tetapi juga berfungsi untuk tulang, jantung, dan mungkin juga otak. Dalam melakukan kerjanya, estrogen membutuhkan reseptor estrogen (ERs) yang dapat “on/off” di bawah kendali gen pada kromosom yang disebut _-ER. Beberapa target organ seperti pertumbuhan dada, tulang, dan empedu responsif terhadap _-ER tersebut. Isoflavon, khususnya genistein, dapat terikat dengan _-ER. Walaupun ikatannya lemah, tetapi dengan β-ER mempunyai ikatan sama dengan estrogen. Senyawa isoflavon terbukti mempunyai efek hormonal, khususnya efek estrogenik. Efek estrogenik ini terkait dengan struktur isoflavon yang dapat ditransformasikan menjadi equol. Dimana equol mempunyai struktur fenolik yang mirip dengan hormon estrogen. Mengingat hormon estrogen berpengaruh pula terhadap metabolisme tulang, terutama proses kalsifikasi, maka adanya isoflavon yang bersifat estrogenik dapat berpengaruh terhadap berlangsungnya proses kalsifikasi. Dengan kata lain, isoflavon dapat melindungi proses osteoporosis pada tulang sehingga tulang tetap padat dan masif.
7. Anti kolesterol
Efek isoflavon terhadap penurunan kolesterol terbukti tidak saja pada hewan percobaan seperti tikus dan kelinci, tetapi juga manusia. Pada penelitian dengan menggunakan tepung kedelai sebagai perlakuan, menunjukkan bahwa tidak saja kolesterol yang menurun, tetapi juga trigliserida VLDL (very low density lipoprotein) dan LDL (low density lipoprotein). Di sisi lain, tepung kedelai dapat meningkatkan HDL (high density lipoprotein) (Amirthaveni dan Vijayalakshmi, 2000). Mekanisme lain penurunan kolesterol oleh isoflavon dijelaskan melalui pengaruh peningkatan katabolisme sel lemak untuk pembentukan energi yang berakibat pada penurunan kandungan kolesterol.
3. Neoflavonoida atau 1,1-diarilpropana

neoflavonoid meliputi jenis-jenis 4-arilkumarin dan berbagai dalbergoin
Penggolongan Flavonoid Berdasarkan Jenis Ikatan
1. Flavonoid O-Glikosida
Pada senyawa ini gugus hidroksil flavonoid terikat pada satu gula atau lebih dengan ikatan hemiasetal yang tidak tahan asam, pengaruh glikosida ini nenyebabkan flavonoid kurang reaktif dan lebih mudah larut dalam air. Gula yang paling umum terlibat adalah glukosa disamping galaktosa, ramilosa, silosa, arabinosa, fruktosa dan kadang-kadang glukoronat dan galakturonat. Disakarida juga dapat terikat pada flavonoid misalnya soforosa, gentibiosa, rutinosa dan lain-lain.

2. Flavonoid C-Glikosida
Gugus gula terikat langsung pada inti benzen dengan suatu ikatan karbon-karbon yang tahan asam. Lazim di temukan gula terikat pada atom C nomor 6 dan 8 dalam inti flavonoid. Jenis gula yang terlibat lebih sedikit dibandingkan dengan O-glikosida. Gula paling umum adalah galaktosa, raminosa, silosa, arabinosa.
3. Flavonoid Sulfat
Senyawa flavonoid yang mengandung satu ion sulfat atau lebih yang terikat pada OH fenol atau gula, Secara teknis termasuk bisulfate karena terdapat sebagai garam yaitu flavon O-SO3K. Banyak berupa glikosida bisulfat yang terikat pada OH fenol yang mana saja yang masih bebas atau pada guIa. Umumnya hanya terdapat pada Angiospermae yang mempunyai ekologi dengan habitat air.
4. Biflavonoid
Senyawa ini mula-mula ditemukan oleh Furukawa dari ekstrak daun G. biloba berupa senyawa berwarna kuning yang dinamai ginkgetin (I-4’, I-7-dimetoksi, II-4’, I-5, II-5, II-7-tetrahidroksi [I-3’, II-8] biflavon). Biflavonoid (atau biflavonil, flavandiol) merupakan dimer flavonoid yang dibentuk dari dua unit flavon atau dimer campuran antara flavon dengan flavanon dan atau auron. Struktur dasar biflavonoid adalah 2,3-dihidroapigeninil-(I- 3,II-3)-apigenin. Senyawa ini memiliki ikatan interflavanil C-C antara karbon C-3 pada masing-masing flavon. Beberapa biflavonoid dengan ikatan interflavanil C- O-C juga ada. Biflavonoid terdapat pada buah, sayuran, dan bagian tumbuhan lainnya.. Hingga kini jumlah biflavonoid yang diisolasi dan dikarakterisasi dari alam terus bertambah, namun yang diketahui bioaktivitasnya masih terbatas. Biflavonoid yang paling banyak diteliti adalah ginkgetin, isoginkgetin, amentoflavon, morelloflavon, robustaflavon, hinokiflavon, dan ochnaflavon. Senyawa- senyawa ini memiliki struktur dasar yang serupa yaitu 5,7,4’-trihidroksi flavanoid, tetapi berbeda pada sifat dan letak ikatan antar flavanoid.

Gambar di atas menunjukkan struktur dasar fenol, flavanoid dan biflavanoid. Sistem cincin bisiklis dinamai cincin A dan C, sedangkan cincin unisiklis dinamai cincin B. Kedua unit monomer biflavonoid ditandai dengan angka Romawi I dan II. Posisi angka pada masing-masing monomer dimulai dari cincin yang mengandung atom oksigen, posisi ke-9 dan ke-10 menunjukkan karbon pada titik penyatuan
Senyawa biflavonóid berperan sebagai antioksidan, anti-inflamasi, anti kanker, anti alergi, antimikrobia, antifungi, antibakteri, antivirus, pelindung terhadap iradiasi UV, vasorelaksan, penguat jantung, anti hipertensi, anti pembekuan darah, dan mempengaruhi metabolisme enzim. Sebagian besar peran di atas dapat dipenuhi oleh berbagai senyawa biflavonoid yang diekstraksi dari berbagai spesies Selaginella.
Seperti yang telah dikemukakan di atas biflavonoid merupakan flavonoid dimer yang biasanya terlibat adalah flavon dan flavonon yang secara biosintesis mempunyai pola oksigenasi yang sederhana, 5, 7, 4' dan ikatan antar flavonoid berupa C-C atau eter. Biflavonoid jarang ditemukan sebagai glikosida dan penyebarannya terbatas umumnya pada paku-pakuan, Gimnospermae, Angiospermae. Salah satu struktur flavonoid yang bernilai tinggi sebagai bahan obat adalah biflavonoid. Di Asia Timur biflavonoid banyak dihasilkan dari daun Ginkgo biloba L. dengan kandungan utama ginkgetin Di Afrika sub Sahara biflavonoid banyak dihasilkan dari biji Garcinia cola Heckel dengan kandungan utama kolaviron. Di Eropa biflavonoid banyak dihasilkan dari herba Hypericum perforatum L. dengan kandungan utama amentoflavon. Selaginella Pal. Beauv. (Selaginellaceae Reichb.) sangat berpotensi sebagai sumber biflavonoid. Tumbuhan ini dapat menghasilkan berbagai jenis biflavonoid, tergantung spesiesnya, serta memiliki sebaran yang bersifat kosmopolitan sehingga dapat dibudidayakan hampir di seluruh permukaan bumi.
C. Biosintesa flavonoid
Pola biosintesa pertama kali disarankan oleh Birch, yaitu: pada tahap-tahap pertama biosintesa flavonoida suatu unit C6-C3 berkombinasi dengan tiga unit C2 menghasilkan unit C6-C3-(C2+C2+C2). Kerangka C15 yang dihasilkan dari kombinasi ini telah mengandung gugus-gugus fungsi oksigen pada posisi-posisi yang diperlukan.
Cincin A dari struktur flavonoid berasal dari jalur poliketida, yaitu kondensasi dari tiga unit asetat atau malonat, sedangkan cincin B dan tiga atom karbon dari rantai propane berasal dari jalur fenilpropanoida (jalur shikimat). Sehingga kerangka dasar karbon dari flavonoida dihasilkan dari kombinasi antara dua jenis biosintesa utama untuk cincin aromatic yaitu jalur shikimat dan jalur asetat-malonat. Sebagai akibat dari berbagai perubahan yang disebabkan oleh enzim, ketiga atom karbon dari rantai propane dapat menghasilkan berbagai gugus fungsi seperti ikatan rangkap, gugus hidroksil, gugus karbonil dan sebagainya.
Jalur sintesis flavonoid bermula dari produk glikolisis yaitu fosfoenol piruvat. Selanjutnya, produk tersebut akan memasuki alur shikimat untuk menghasilkan fenilalanin sebagai materi awal untuk alur metabolic fenil propanoid. Alur tersebut akan menghasilkan 4-coumaryl-coA, yang akan bergabung dengan malonyl-coA untuk menghasilkan struktur sejati flavonoid. Flavonoid yang pertama kali terbentuk pada biosintesis ini disebut khalkon. Bentuk lain diturunkan dari khalkon melalui berbagai alur dan rangkaian proses enzimatik, seperti:flavanol, flavan-3-ols, proantosianidin(tannin).
D. Identifikasi flavonoid
Sebagian besar senyawa flavonoid alam ditemukan dalam bentuk glikosidanya, dimana unit flavonoid terikat pada suatu gula. Glikosida adalah kombinasi antara gula dan suatu alcohol yang saling berikatan melalui ikatan glikosida. Pada prinsipnya, ikatan glikosida terbentuk apabila gugus hidroksil dari alcohol beradisi kepada gugus karbonil dari gula, sama seperti adisi alcohol kepada aldehid yang dikatalis oleh asam menghasilkan suatu asetal.
Pada hidrolisis oleh asam, suatu glikosida terurai kembali atas komponen-komponennya menghasilkan gula dan alcohol yang sebanding dan alcohol yang dihasilkan ini disebut aglokin. Residu gula dari glikosida flavonoid alam adalah glukosa tersebut masinbg-masing disebut glukosida, ramnosida, galaktosida dan gentiobiosida.
Flavonoida dapat ditemukan sebagai mono-, di- atau triglikosida dimana satu, dua atau tiga gugus hidroksil dalam molekul flavonoid terikat oleh gula. Poliglikosida larut dalam air dan sedikit larut dalam pelarut organic seperti eter, benzene, kloroform dan aseton.
Flavonoid nerupakan metabolit sekunder dalam tumbuhan yang mempunyai variasi struktur yang beraneka ragam, namun saling berkaitan karena alur biosintesis yang sama. Jalur biosintesis flavonoid dimulai dari pertemuan alur asetat malonat dan alur sikimat membentuk khalkon, dari bentuk khalkon ini diturunkan menjadi bentuk lanjut menjadi berbagai bentuk lewat alur antar ubah posisi, dehidrogenasi, denetilasi dan lain-lain. Kenudian daripada itu menghasilkan bentuk sekunder dihidrokalkon, flavon, auron, isoflavon (penurunan selanjutnya membentuk peterokarpon dan rotenoid) dan dehidroflavonol (penurunan selanjutnya antosianidin, flavonol, epikatekin ) .
Dari bentuk-bentuk sekunder tersebut akan terjadi nodifikasi lebih lanjut pada berbagai tahap dan menghasilkan penambahan / pengurangan hidroksilasi, metilenasi, ortodihidroksil, metilasi gugus hidroksil atau inti flavonoid, dimerisasi, pembentukan bisulfat, dan yang terpenting glikolisasi gugus hidroksil
E. Senyawa Flavonoid Pada Tumbuhan
Flavonoid sebenarnya terdapat pada semua bagian tumbuhan termasuk daun, akar, kayu, kulit, tepungsari, nektar, bunga, buah dan biji. Hanya sedikit catatan yang melaporkan flavonoid pada hewan, misalnya dalam kelenjar bau berang-berang, propilis (sekresi lebah), sayap kupu-kupu, yang mana dianggap bukan hasil biosintesis melainkan dari tumbuhan yang menjadi makanan hewan tersebut, Penyebaran flavonoid terbatas pada golongan tumbuhan dengan tingkat biovita atau yang lebih tinggi, golongan tumbuhan ini merupakan tumbuhan yang asal-usulnya lebih baru dibanding golongan tumbuhan yang tidak mengandung flavonoid (500 - 3000 juta tahun), segi penting dari penyebaran flavonoid ini adalah adanya kecenderungan kuat bahwa tumbuhan yang secara takson berkaitan akan menghasilkan jenis flavonoid yang serupa.
Senyawa antosianin sering dihubungkan dengan warna bunga tumbuhan. Sianidin umumnya terdapat pada suku Gramineae. Senyawa biflavonoid banyak terdapat pada subdivisi Gymnospernae sedang isoflavonoid pada suku leguminosae.
Pada tumbuhan yang mempunyai morfologi sederhana seperti lumut, paku, dan paku ekor kuda mengandung senyawa flavonoid O-GIikosida, flavonol, flavonon, Khalkon, dihidrokhalkon, C-Gl ikosida . Angiospermae mengandung senyawa flavonoid kompleks yang lebih banyak.
F. Sifat Fisika dan Kimia Senyawa Flavonoid
Flavonoid merupakan senyawa polifenol sehingga bersifat kimia senyawa fenol yaitu agak asam dan dapat larut dalam basa, dan karena merupakan senyawa polihidroksi(gugus hidroksil) maka juga bersifat polar sehingga dapat larut dalan pelarut polar seperti metanol, etanol, aseton, air, butanol, dimetil sulfoksida, dimetil formamida. Disamping itu dengan adanya gugus glikosida yang terikat pada gugus flavonoid sehingga cenderung menyebabkan flavonoid mudah larut dalam air.
Pemisahan senyawa golongan flavonoid berdasarkan sifat kelarutan dalam berbagai macam pelarut dengan polaritas yang meningkat adalah sebagai berikut :
1. Flavonoid bebas dan aglikon,dalam eter .
2. O-Glikosida,dalam etil asetat.
3. C-Glikosida dan leukoantosianin dalam
butanol dan amil alkohoI.
Oleh karena itu banyak keuntungan ekstraksi dengan polaritas yang meningkat.
G. Isolasi dan Identifikasi Flavonoid
1. Isolasi Dengan metanol
Terhadap bahan yang telah dihaluskan, ekstraksi dilakukan dalam dua tahap. Pertama dengan metanol:air (9:1) dilanjutkan dengan metanol:air (1:1) lalu dibiarkan 6-12 jam. Penyaringan dengan corong buchner, lalu kedua ekstrak disatukan dan diuapkan hingga 1/3 volume mula-muIa, atau sampai semua metanol menguap dengan ekstraksi menggunakan pelarut heksan atau kloroform (daIam corong pisah) dapat dibebaskan dari senyawa yang kepolarannya rendah, seperti lemak, terpen, klorofil, santifil dan lain-lain .
2. Isolasi Dengan Charaux Paris
Serbuk tanaman diekstraksi dengan metanol,lalu diuapkan sampai kental dan ekstrak kental ditambah air panas dalam volume yang sama, Ekstrak air encer lalu ditambah eter, lakukan ekstraksi kocok, pisahkan fase eter lalu uapkan sampai kering yang kemungkinan didapat bentuk bebas. Fase air dari hasil pemisahan ditambah lagi pelarut etil. asetat diuapkan sampai kering yang kemungkinan didapat Flavonoid O Glikosida. Fase air ditambah lagi pelarut n - butanol, setelah dilakukan ekstraksi, lakukan pemisahan dari kedua fase tersebut. Fase n-butanol diuapkan maka akan didapatkan ekstrak n - butanol yang kering, mengandung flavonoid dalam bentuk C-glikosida dan leukoantosianin. Dari ketiga fase yang didapat itu langsung dilakukan pemisahan dari komponen yang ada dalam setiap fasenya dengan mempergunakan kromatografi koLom. Metode ini sangat baik dipakai dalam mengisolasi flavonoid dalam tanaman karena dapat dilakukan pemisahan flavonoid berdasarkan sifat kepolarannya.
3. Isolasi dengan beberapa pelarut.
Serbuk kering diekstraksi dengan kloroform dan etanol, kemudian ekstrak yang diperoleh dipekatkan dibawah tekanan rendah. Ekstrak etano lpekat dilarutkan dalam air lalu diekstraksi gojog dengan dietil eter dan n-butanol, sehingga dengan demikian didapat tiga fraksi yaitu fraksi kloroform, butanol dan dietil eter.
ldentifikasi Dengan Reaksi warna
1. Uji WILSTATER
Uji ini untuk mengetahui senyawa yang mempunyai inti δ benzopiron. Warna-warna yang dihasilkan dengan reaksi Wilstater adalah sebagai berikut:
- Jingga Daerah untuk golongan flavon.
- Merah krimson untuk golongan fLavonol.
- Merah tua untuk golongan flavonon.
2. Uji BATE SMITH MATECALVE
Reaksi warna ini digunakan untuk menuniukkan adanya senyawa leukoantosianin, reaksi positif jika terjadi warna merah yang intensif atau warna ungu.











BAB III
PENUTUP

Senyawa flavonoida adalah suatu kelompok senyawa fenol yang terbesar yang ditemukan di alam. Senyawa-senyawa ini merupakan zat warna merah, ungu, dan biru. Dan sebagai zat warna kuning yang ditemukan dalam tumbuh-tumbuhan.
Flavonoid mempunyai kerangka dasar karbon yang terdiri dari 15 atom karbon, dimana dua cincin benzen (C6) terikat pada suatu rantai propana (C3) sehingga bentuk susunan C6-C3-C6. susunan ini dapat menghasilkan tiga jenis struktur senyawa Flavonoid yaitu :
a. Flavonoida atau 1,3-diarilpropana
b. Isoflavonoid atau 1,2- diarilpropana
c. Neoflavonoida atau 1,1-diarilpropana
Istilah flavonoida diberikan untuk senyawa-senyawa fenol yang berasal dari kata flavon, yaitu nama dari salah satu flavonoid yang terbesar jumlahnya dalam tumbuhan. Senyawa-senyawa flavon ini mempunyai kerangka 2-fenilkroman, dimana posisi orto dari cincin A dan atom karbon yang terikat pada cincin B dari 1.3-diarilpropana dihubungkan oleh jembatan oksigen sehingga membentuk cincin heterosiklik yang baru (cincin C).
Senyawa-senyawa flavonoid terdiri dari beberapa jenis tergantung pada tingkat oksidasi dari rantai propana dari sistem 1,3-diarilpropana. Flavon, flavonol dan antosianidin adalah jenis yang banyak ditemukan dialam sering sekali disebut sebagai flavonoida utama. Banyaknya senyawa flavonoida ini disebabkan oleh berbagai tingkat alkoksilasi atau glikosilasi dari struktur tersebut.
Senyawa-senyawa isoflavonoid dan neoflavonoida hanya ditemukan dalam beberapa jenis tumbuhan, terutama suku Leguminosae.

Masing-masing jenis senyawa flavonoida mempunyai struktur dasar tertentu. Flavonoida mempunyai pola oksigenasi yang berselang-seling yaitu posisi 2,4,6. cincin B flavonoid mempunyai satu gugus fungsi oksigen pada posisi para atau dua pada posisi para dan meta atau tiga pada posisi satu di para dan dua di meta.
Cincin A selalu mempunyai gugus hidroksil yang letaknya sedemikian rupa sehingga memberikan kemungkinan untuk terbentuk cincin heterosikllis dalam senyawa trisiklis.
Beberapa senyawa flavonoida adalah sebagai berikut :
Cincin A – COCH2CH2 – Cincin B —————————– Hidrokalkon
Cincin A – COCH2CHOH – Cincin B ————————– Flavanon, kalkon
Cincin A – COCH2CO – Cincin B —————————— Flavon
Cincin A – CH2COCO – Cincin B —————————— Antosianin
Cincin A – COCOCH2 – Cincin B ——————————- Auron
Pola biosintesis pertama kali disarankan oleh Birch, yaitu : pada tahap tahap pertama biosintesa flavonoida suatu unit C6-C3 berkombinasi dengan tiga unit C2 menghasilkan unit C6-C3-(C2+C2+C2).kerangka C15 yang dihasilkan dari kombinasi ini telah mengandung gugus-gugus fungsi oksigen pada posisi-posisi yang diperlukan. Cincin A dari struktur flavonoida berasal dari jalur poliketida, yaitu kondensasidari tiga unit asetat atau malonat, sedangkan cincin B dan tiga atom karbon dari rantai propana berasal dari jalur fenilpropanoida (jalur shikimat). Sehingga kerangka dasar karbon dari flavonoida dihasilkan dari kombinasi antara dua jenis biosintes utamadari cincin aromatik yaitu jalur shikimat dan jalur asetat-malonat. Sebagai akibat dari berbagai perubahan yang disebabkan oleh enzim, ketiga atom karbon dari rantai propana dapat menghasilkan berbagai gugus fungsi seperti pada ikatan rangkap, gugus hidroksi, gugus karbonil, dan sebagainya.
Sebagai besar senyawa flavonoida alam ditemukan dalam bentuk glikosida, dimana unit flavonoid terikat pada sutatu gula. Glikosida adalah kombinasi antara suatu gula dan suatu alkohol yang saling berikatanmelalui ikatan glikosida. Pada prinsipnya, ikatan glikosida terbentuk apabila gugus hidroksil dari alkohol beradisi kepada gugus karbonil dari gula sama seperti adisi alkohol kepada aldehida yang dikatalisa oleh asam menghasilkan suatu asetal.
Pada hidrolisa oleh asam, suatu glikosida terurai kembali atas komponen-komponennya menghasilkan gula dan alkohol yang sebanding dan alkohol yang dihasilkan ini disebut aglokin. Residu gula dari glikosida flavonoida alam adalah glukosa, ramnosa, galaktosa dan gentiobiosa sehingga glikosida tersebut masing-masing disebut glukosida, ramnosida, galaktosida dan gentiobiosida.
Flavonoida dapat ditemukan sebagai mono-, di- atau triglikosida dimana satu, dua atau tiga gugus hidroksil dalam molekul flavonoid terikat oleh gula. Poliglikosida larut dalam air dan sedikit larut dalam pelarut organik seperti eter, benzen, kloroform dan aseton.
Antioksidan alami terdapat dalam bagian daun, buah, akar, batang dan biji dari tumbuh-tumbuhan obat. Bagian tersebut umumnya mengandung senyawa fenol dan polifenol. Polifenol dan turunannya telah lama dikenal memiliki aktivitas antibakteri, antimelanogenesis, antioksidan dan antimutagen. Sebagai antioksidan polifenol berperan sebagai penangkap radikal bebas penyebab peroksidasi lipid yang dapat menimbulkan kerusakan pada bahan makanan, selain itu senyawa antioksidan berfungsi mencegah kerusakan sel dan DNA akibat adanya senyawa radikal bebas.
Senyawa flavonoid yang merupakan salah satu golongan dari polifenol sampai saat ini belum dimanfaatkan secara optimal dan masih digunakan secara terbatas. Hal ini dikarenakan senyawa flavonoid tidak stabil terhadap perubahan pengaruh oksidasi, cahaya, dan perubahan kimia, sehingga apabila teroksidasi strukturnya akan berubah dan fungsinya sebagai bahan aktif akan menurun bahkan hilang dan kelarutannya rendah. Kestabilan dan kelarutan dapat ditingkatkan dengan cara mengubah senyawa flavonoid menjadi bentuk glikosida melalui reaksi kimia maupun enzimatik dengan bantuan enzim transferase.
Senyawa-senyawa flavanoid yang umumnya bersifat antioksidan dan banyak yang telah digunakan sebagai salah satu komponen bahan baku obat-obatan. Bahkan, berdasarkan penelitian di Jepang, ditemukan molekul isoflavon di dalam tempe. Oleh karena molekul isoflavon bersifat antioksidan maka tempe merupakan sumber pangan yang baik untuk menjaga kesehatan, selain kandungan gizinya tinggi.
Senyawa-senyawa flavonoid dan turunannya dari tanaman nangka-nangkaan memiliki fungsi fisiologi tertentu. Ada dua kategori fungsi fisiologi senyawa flavonoid tanaman nangka-nangkaan berdasarkan sebarannya di Indonesia. Tanaman nangka-nangkaan yang tumbuh di Indonesia bagian barat, produksi senyawa flavanoid diduga berfungsi sebagai bahan kimia untuk mengatasi serangan penyakit (sebagai antimikroba atau antibakteri) bagi tanaman.
Sedangkan yang tumbuh di Indonesia bagian timur, produksi senyawa flavanoid berfungsi sebagai alat pertahanan (antivirus). Dengan menggunakan pendekatan fungsi fisiologi ini, uji biologi artoindonesianin dan kerabatnya dilakukan. Berdasarkan penelitian yang dilakukan S. Scheller, dkk yang menguji efektifitas antikanker dari ekstrak etanol propolis (EEP) pada mencit yang diinduksi dengan ehrlich carcinoma cells menunjukkan, mencit yang bisa bertahan hidup lebih banyak setelah diberi EEP. Efek antikanker EEP terhadap Ehrlich Carcinoma cells ini berkaitan dengan kandungan flavonoid pada propolis. Flavonoid mempengaruhi tahapan metabolisme sel kanker misalnya dengan cara menghambat penggabungan timidin, uridin, dan leucin dengan sel kanker tersebut sehingga dapat menghambat sintesis DNA sel kanker. Peranan flavonoid sebagai antikanker juga diperkuat oleh eksperimen lain yang menggunakan hidrokarbon aromatic polisiklik sebagai penginduksi kanker.
Mekanisme penghambatan terhadap hidrokarbon aromatic polisiklik berkaitan dengan penghambatan stimulasi metabolik yang diinduksi oleh hidrokarbon aromatic polisiklik dan memengaruhi aktivitas beberapa sel promoter. Flavonoid ini merupakan sua tu zat yang banyak terdapat pada tumbuhan, tetapi dalam propolis berada dalam bentuk terkonsentrasi.
Dengan sistem metabolismenya, lebah membuat flavonoid dari tumbuhan itu lebih efektif. Jadi lebah seolah-olah menjadi perantara flavonoid dengan manusia dan hewan. Senyawa flavonoid yang ditemukan pada EEP antara lain betulinol, quersetin, isovanilin, galangin, isalpinin, kaemferol, rhamnetin, isohmnetin, pinocembrin, pinostrobin dan pinobaksin. Saat ini propolis tersedia dalam bentuk tablet, salep, kapsul, krim, dll. Penggunaan propolis bisa pada orang sehat maupun sakit. Pada orang sehat penggunaan propolis dapat meningkatkan daya tahan tubuh terhadap penyakit. Sedangkan pada orang yang sedang sakit penggunaannya bila digabungkan dengan obat sintesis bisa meningkatkan efeknya misalnya bisa meningkatkan efek penisilin.
















DAFTAR PUSTAKA

Anonim. 2010. Biflavonoid. Online: http://www.scribd.com/doc/12754372/D090115AHMBifavonoidxxx, diakses tanggal 30 Oktober 2010.

Hernawati. 2010. Perbaikan Kinerja Reproduksi Akibat Pemberian Isoflavon dari Tanaman Kedelai. Online: http://file.upi.edu/Direktori/D%20-%20FPMIPA/JUR.%20PEND.%20BIOLOGI/197003311997022%20-%20HERNAWATI/FILE%2012.pdf, diakses tanggal 30 Oktober 2010.

Lenny, Sofia. 2006. Senyawa Flavonoid, Fenil Propanoid dan Alkaloid. Online:http://www.pdf-searcher.com/SENYAWA-FLAVONOID,-FENIL-PROPANOID-DAN-ALKALOID.html, diakses tanggal 30 Oktober 2010.

ANALISIS KUANTITATIF

ANALISIS KUANTITATIF : ASIDIMETRI DAN ALKALIMETRI
Titrasi adalah proses penentuan banyaknya suatu larutan dengan konsentrasi yang diketahui dan diperlukan untuk bereaksi secara lengkap dengan sejumlah contoh tertentu yang akan di analisis. Contoh yang akan dianalisis dirujuk sebagai (tak diketahui, unknown). Prosedur analitis yang melibatkan titrasi dengan larutan-larutan yang konsentrasinya diketahui disebut analisis volumetri. Dalam analisis larutan asam dan basa, titrasi melibatkan pengukuran yang seksama, volume-volume suatu asam dan suatu basa yang tepat saling menetralkan (Keenan, 1998: 422-423).

Pada proses titrasi ini digunakan suatu indikator yaitu suatu zat yang ditambahkan sampai seluruh reaksi selesai yang dinyatakan dengan perubahan warna. Perubahan warna menandakan telah tercapainya titik akhir titrasi (Brady, 1999 : 217-218).
Larutan basa yang akan diteteskan (titran) dimasukkan ke dalam buret (pipa panjang berskala) dan jumlah yang terpakai dapat diketahui dari tinggi sebelum dan sesudah titrasi. Larutan asam yang dititrasi dimasukkan kedalam gelas kimia (erlenmeyer) dengan mengukur volumenya terlebih dahulu denga memekai pipet gondok. Untuk mengamati titik ekivalen, dipakai indikator yang warnanya disekitar titik ekivalen. Dala titrasi yang diamati adalah titik akhir bukan titik ekivalen (syukri, 1999 : 428).
Suatu proses didalam laboratorium untuk mengukur jumlah suatu reaktan yang bereaksi sempurna dengan sejumlah reaktan lainnya, dimana reaktan pertama ditambahkan secara kontinu ke dalam reaktan kedua disebut titrasi. Reaktan yang ditambahkan tadi disebut sebagai titrant dan reaktan yang ditambahkan titrant kedalamnya disebut titree. Didalam beberapa titrasi, titik ekivalen adalah titik selama proses titrasi dimana tepatnya titrat telah cukup ditambahkan untuk bereaksi dengan titree. Salah satu masalah tekhnis dalam titrasi adalah titik dimana suatu perubahan dapat diamati, terjadi yang untuk mengindikasikan pendekatan yang paling baik ke titik ekivalen. Secara ideal, titik akhir dan titik ekivalen seharusnya identik, tetapi dalam prakteknya jarang sekali ada orang yang mampu membuat kedua titik tersebut tepat sama, meskipun ada beberapa hal dimana perbedaan antara kedua hal tersebut dapat diabaikan (Snyder, 1996 : 597-599).
Kadang-kadang kita perlu mengetahui tidak hanya atau sekedar pH, akan tetapi perlu kita ketahui juga berapa banyak asam atau basayang terdapat didalam sampel. Sebagai contoh, seorang ahli kimia lingkungan mempelajari suatu danau dimana ikan-ikannya mati. Dia harus mengetahui secara pasti seberapa banyak asam yang terkandung dalam suatu sampel air danau tersebut. Titrasi melibatkan suatu proses penambahan suatu larutan yang disebut tirant dari buret ke suatu flask yang berisi sampel dan disebut analit. Berhasilnya titrasi asam-basa tergantung pada seberapa akurat kita dapat mendeteksi titik stoikiometri. Pada titik tersebut, jumlah mol dari H3O+ dan OH- yang ditambahkan sebagai titrant adlah sama dengan jumlah mol dari OH- atau H3O+  yang terdapat dalam analit. Pada titik stoikiometri, larutan terdiri dari garam dan air. Larutan tersebut adalah asam apabila ion asam yang terkandung didalamnya, dan basa apabila ion basa yang terkandung didalamnya (Atkins, 1997 : 550).
Seperti yang telah diketahui sebelumnya, dalam stoikiometri titrasi, titik ekivalen dari reaksi netralisasi adalah titik pada reaksi dimana asam dan basa keduanya setara, yaitu dimana keduanya tidak ada yang berlebihan. Dalam titrasi, suatu larutan yang akan dinetralkan, misal asam, ditempatkan di dalam flask bersamaan dengan beberapa tetes indikator asam basa. Kemudian larutan lainnya (misal basa) yang terdapat didalam buret, ditambahkan ke asam. Pertama-tama ditambahkan cukup banyak, kemudian dengan tetesan hingga titik ekivalen. Titik ekivalen terjadi pada saat terjadinya perubahan warna indikator. Titik pada titrasi dimana indikator warnanya berubah disebut titik akhir (Petrucci, 1997 : 636).
Misalkan kita ingin menentukan molaritas dari suatu larutan HCl yang tidak diketahui konsentrasinya. Kita bisa menentukan konsentrasi HCl tersebut melalui suatu prosedur yang disebut titrasi, dimana kita menetralisasi suatu asam dengan suatu basa yang telah diketahui konsentrasinya. Pada titrasi, pertama-tama kita menempatkan suatu asam yang volumenya telah ditentukan ke dalam suatu flask. Dan tambahkan beberapa tetes indikator seperti penolftalein, kedalam larutan asam. Dalam larutan asam, penolftalein tidak berwarna. Kemudian, buret kita isi dengan larutan NaOH yang konsentrasinya telah diketahui. dan dengan hati-hati NaOH ditambahkan ke asam pada flask. Kita bisa mengetahui bahwa netralisasi telah berlangsung ketika penolftalein dalam larutan berubah warna menjadi merah muda. Ini disebut titik akhir netralisasi. Dari volume yang ditambahkan dan molar NaOH, kita dapat menentukan konsentrasi asam (Timberlake, 2004 : 354-355).
DAFTAR PUSTAKA
Atkins, Peter and Jones Lorette. 1997. Chemistry Molecules and Canges, 3rd Ed. New
York: W. H. Freeman and Company.
Brady, James E. 1999. Kimia Universutas Asas dan Struktur. Jakarta: Binarupa
Aksara
Keenan, C. W, dkk. 1998. Kimia untuk Universitas. Jakarta: Erlangga.
Petrucci, Ralph H and Willias S. Harwood. 1997. General Chemistry. New Jersey:
Prentice Hall.
Snyder, Milton K. 1996. Chemistry Structure and Reaction. New York: Holt, Rinehart
And winston. Inc.
Syukri. 1999. Kimia Dasar 2. Bandung ITB.
Timberlake, Karen C. 2004. General, Organic and Biological Chemistry Structure Of
Life. San Fransisco: Pearson Benjamin Cummings.

Kadar Abu


Kadar Abu

Sebagian besar bahan makanan, yaitu sekitar 96% terdiri dari bahan organic dan air. Sisanya terdiri dari unsur- unsur mineral. Unsur mineral juga di kenal sebagai zat organic atau kadar abu. Dalam proses pembakaran, bahan-bahan organik terbakar tetapi zat anorganiknya tidak, karena itulah disebut abu. Meskipun banyak dari elemen-elemen mineral telah jelas diketahui fungsinya pada makanan ternak, belum banyak penelitian sejenis dilakuakan pada manusia. Karena itu peranan berbagai unsur mineral bagi manusia masih belum sepenuhnya diketahui (Winarno,1997).
Abu adalah zat anorganik sisa hasil pembakaran suatu bahan organik. Kandungan abu dan komposisinya tergantung pada macam bahan dan cara pengabuannya. Kadar abu ada hubungannya dengan mineral suatu bahan. Mineral yang terdapat dalam suatu bahan dapat merupakan dua macam garam yaitu :
1. Garam-garam organik, misalnya garam dari as. malat, oxalate, asetat., pektat dan lain-lain
2. Garam-garam anorganik, misalnya phospat, carbonat, chloride, sulfat nitrat dan logam alkali
(Anonim, 2010).
Selain kedua garam tersebut, kadang-kadang mineral dapat terbentuk sebagai senyawa yang kompleks yang bersifat organis. Apabila akan ditentukan jumlah mineralnya dalam bentuk aslinya adalah sangat sulit. Oleh karenanya biasanya dilakukan dengan menentukan sisa pembakaran garam mineral tersebut yang dikenal dengan pengabuan. Komponen mineral dalam suatu bahan sangat bervariasi baik macam maupun jumlahnya. Penentuan konsistensi merupakan mineral bahan hasil pertanian yang dapat dibedakan menjadi dua tahapan yaitu : pengebuan total (larut dan tidak larut) dan penentuan individu komponen.
Penentuan kadar abu total dapat digunakan untuk berbagai tujuan antara lain:
1. Menentukan baik tidaknya suatu pengolahan
Dalam penggilingan gandum, misalnya apabila masih banyak katul atau lembaga yang terikut maka tepung gandum tersebut akan memiliki kadar abu yang tinggi
2. Mengetahui jenis bahan yang digunakan
Penentuan kadar abu dapat digunakan untuk memperkirakan kandungan buah yang digunakan dalam marmalade atau jelly. Kandungan abu juga dapat dipakai untuk menentukan atau membedakan fruit vinegar (asli) atau sintesis
3. Penentuan parameter nilai gizi pada bahan makanan
Adanya kandungan abu yang tidak larut dalam asam yang cukup tinggi menunjukkan adanya pasir atau kotoran yang lain (Fauzi (2006).
Penentuan kadar abu dapat dilakukan dengan dua cara yaitu :
• Pengabuan cara Langsung (Cara Kering)
Prinsip dari pengabuan cara langsung yaitu dengan mengoksidasi semua zat organic pada suhu tinggi, yaitu sekitar 500 – 600oC dan kemudian melakukan penimbangan zat yang tertinggal setelah proses pembakaran tersebut (Sudarmadji, 1996).
Mekanisme pengabuan pada percobaan ini adalah pertama-tama krus porselin dioven selama 1 jam. Krus porselin adalah tempat atau wadah yang digunakan dalam pengabuan, karena penggunaannya luas dan dapat mencapai berat konstan maka dilakukan pengovenan. Kemudian didinginkan selama 30 menit, setelah itu dimasukkan eksikator. Lalu timbang krus sebagai berat a gram. Setelah itu masukkan bahan (kentang halus) sebanyak 3 gram kedalam krus dan catat sebagai berat b gram. Kemudian dimasukkan dalam tanur pengabuan sampai warna menjadi putih keabu-abuan. Pengabuan yang dilakukan didalam muffle dilakukan melalui 2 tahap yaitu :
a. Pemanasan pada suhu 300oC yang dilakukan dengan maksud untuk dapat melindungi kandungan bahan yang bersifat volatile dan bahan berlemak hingga kandungan asam hilang. Pemanasan dilakukan sampai asap habis.
b. Pemanasan pada suhu 800oC yang dilakukan agar perubahan suhu pada bahan maupun porselin tidak secara tiba-tiba agar tidak memecahkan krus yang mudah pecah pada perubahan suhu yang tiba-tiba.
Setelah pengabuan selesai maka dibiarkan dalam tanur selama 1 hari. Sebelum dilakukan penimbangan, krus porselin dioven terlebih dahulu dengan tujuan mengeringkan air yang mungkin terserap oleh abu selama didinginkan dalam muffle dimana pada bagian atas muffle berlubang sehingga memungkinkan air masuk, kemudian krus dimasukkan dalam eksikator yang telah dilengkapi zat penyerap air berupa silica gel. Setelah itu dilakukan penimbangan dan catat sebagai bera c gram.
Beberapa kelemahan maupun kelebihan yang terdapat pada pengabuan dengan cara lansung. Beberapa kelebihan dari cara langsung, antara lain :
a. Digunakan untuk penentuan kadar abu total bahan makanan dan bahan hasil pertanian, serta digunakan untuk sample yang relative banyak,
b. Digunakan untuk menganalisa abu yang larut dan tidak larut dalam air, serta abu yang tidak larut dalam asam, dan
c. Tanpa menggunakan regensia sehingga biaya lebih murah dan tidak menimbulkan resiko akibat penggunaan reagen yang berbahaya.
Sedangkan kelemahan dari cara langsung, antara lain :
a. Membutuhkan waktu yang lebih lama,
b. Tanpa penambahan regensia,
c. Memerlukan suhu yang relatif tinggi, dan
d. Adanya kemungkinan kehilangan air karena pemakaian suhu tinggi (Apriantono (1989.

• Pengabuan cara Tidak Langsung (Cara Basah)
Prinsip dari pengabuan cara tidak langsung yaitu memberikan reagen kimia tertentu kedalam bahan sebelum dilakukan pengabuan. Senyawa yang biasa ditambahkan adalah gliserol alcohol ataupun pasir bebas anorganik selanjutnya dilakukan pemanasan pada suhu tunggi. Pemanasan mengakibatkan gliserol alcohol membentuk kerak sehingga menyebabkan terjadinya porositas bahan menjadi besar dan dapat mempercepat oksidasi. Sedangkan pada pemanasan untuk pasir bebas dapat membuat permukaan yang bersinggungan dengan oksigen semakin luas dan memperbesar porositas, sehingga mempercepat proses penngabuan (Sudarmadji, 1996).
Mekanisme pengabuannya adalah pertama-tama krus porselin dioven selama 1 jam. Kemudian didinginkan selama 30 menit, setelah itu dimasukkan eksikator. Lalu timbang krus sebagai berat a gram. Setelah itu masukkan bahan (kentang halus) sebanyak 3 gram kedalam krus dan catat sebagai berat b gram. Kemudian ditambahkan gliserol alcohol 5 ml dan dimasukkan dalam tanur pengabuan sampai warna menjadi putih keabu-abuan. Setelah terjadi pengabuan, abu yang terbentuk dibiarkan dalam muffle selama 1 hari. Sebelum dilakukan penimbangan, krus porselin dioven terlebih dahulu dengan tujuan mengeringkan air yang mungkin terserap oleh abu selama didinginkan dalam muffle dimana pada bagian atas muffle berlubang sehingga memungkinkan air masuk, kemudian krus dimasukkan dalam eksikator yang telah dilengkapi zat penyerap air berupa silica gel. Setelah itu dilakukan penimbangan dan catat sebagai bera c gram.
Suhu yang tinggi menyebabkan elemen abu yang bersifat volatile seperti Na, S, Cl, K dan P menguap. Pengabuan juga menyebabkan dekomposisi tertentu seperi K2CO3 dan CaCO3. pengeringan pada metode ini bertujuan untuk mendapatkan berat konstan. Sebelum sample dimasukkan dalam krus, bagian dalam krus dilapisi silica gel agar tidak terjadi pengikisan bagian dalam krus oleh zat asam yang terkandung dalam sample.
Beberapa kelebihan dan kelemahan yang terdapat pada pengabuan cara tidak langsung. Kelebihan dari cara tidak langsung, meliputi :
a. Waktu yang diperlukan relatif singkat,
b. Suhu yang digunakan relatif rendah,
c. Resiko kehilangan air akibat suhu yang digunakan relative rendah,
d. Dengan penambahan gliserol alkohol dapat mempercepat pengabuan, dan
e. Penetuan kadar abu lebih baik.
Sedangkan kelemahan yang terdapat pada cara tidak langsung, meliputi :
a. Hanya dapat digunakan untuk trace elemen dan logam beracun,
b. Memerlukan regensia yang kadangkala berbahaya, dan
c. Memerlukan koreksi terhadap regensia yang digunakan (Apriantono (1989).

DAFTAR PUSTAKA
Anonim. 2010. Buku Petunjuk Praktikum Analisa Pangan dan Hasil Pertanian. Jember: FTP UNEJ.
Fauzi, M. 2006. Analisa Pangan dan Hasil Pertanian. Handout.Jember: FTP UNEJ.
Sudarmadji, dkk. 1996. Analisa Bahan Makanan dan Pertanian. Yogyakarta: Penerbit Liberty.
Winarno, F. G. 1997. Kimia Pangan dan Gizi. Jakarta: Gramedia Pustaka Utama
Apriantono, A. dan D. Fardiaz 1989. Analisa Pangan. Bogor : Departemen Pendidikan dan Kebudayaan, Dirjen Pendidikan Tinggi PAU Pangan dan Gizi IPB